If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-780=0
a = 1; b = 3; c = -780;
Δ = b2-4ac
Δ = 32-4·1·(-780)
Δ = 3129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{3129}}{2*1}=\frac{-3-\sqrt{3129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{3129}}{2*1}=\frac{-3+\sqrt{3129}}{2} $
| 3x-2=6(x-5) | | -126=7v | | 54x=562 | | 11n=1.21 | | 3(3-2x)=3(3x+1) | | 5x-1=3x-41 | | 1/22x+2=13 | | 1/2x+1=10.5 | | x=1.8-0.8+9x^2-10x^2 | | 3x-2/2=13 | | 7x²-10x-8=0 | | 1/4x+2=6.75 | | (10x+24)^0.5=(x+12) | | g/2+1=6 | | 5(x-75)=50 | | 0.35/(2/3x)=0.45/(x−10) | | 10+8z=+3–10 | | n^2+7n-264=0 | | 90=1/2(14+16)h | | 7x+6=195 | | 4(3m+6)-3(2m+9=9) | | 12-(6+x)=(12-6)+x | | x2/6=12 | | 1/10x+2=4 | | 3.7y=20.72 | | -4+3x=-6x+10 | | x/3–7=10 | | 40=4/3x | | 2(2x+1)=3x-9x | | 4x-4÷4=-2 | | 4.8=e-3.2 | | 4+35=20x+13 |